Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Behav Sci (Basel) ; 13(8)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37622808

RESUMO

Tourette Syndrome (TS) is a high-incidence multifactorial neuropsychiatric disorder characterized by motor and vocal tics co-occurring with several diverse comorbidities, including obsessive-compulsive disorder and attention-deficit hyperactivity disorder. The origin of TS is multifactorial, with strong genetic, perinatal, and immunological influences. Although almost all neurotransmettitorial systems have been implicated in TS pathophysiology, a comprehensive neurophysiological model explaining the dynamics of expression and inhibition of tics is still lacking. The genesis and maintenance of motor and non-motor aspects of TS are thought to arise from functional and/or structural modifications of the basal ganglia and related circuitry. This complex wiring involves several cortical and subcortical structures whose concerted activity controls the selection of the most appropriate reflexive and habitual motor, cognitive and emotional actions. Importantly, striatal circuits exhibit bidirectional forms of synaptic plasticity that differ in many respects from hippocampal and neocortical plasticity, including sensitivity to metaplastic molecules such as dopamine. Here, we review the available evidence about structural and functional anomalies in neural circuits which have been found in TS patients. Finally, considering what is known in the field of striatal plasticity, we discuss the role of exuberant plasticity in TS, including the prospect of future pharmacological and neuromodulation avenues.

2.
Cells ; 12(2)2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36672231

RESUMO

Astrocytes' organisation affects the functioning and the fine morphology of the brain, both in physiological and pathological contexts. Although many aspects of their role have been characterised, their complex functions remain, to a certain extent, unclear with respect to their contribution to brain cell communication. Here, we studied the effects of nanotopography and microconfinement on primary hippocampal rat astrocytes. For this purpose, we fabricated nanostructured zirconia surfaces as homogenous substrates and as micrometric patterns, the latter produced by a combination of an additive nanofabrication and micropatterning technique. These engineered substrates reproduce both nanotopographical features and microscale geometries that astrocytes encounter in their natural environment, such as basement membrane topography, as well as blood vessels and axonal fibre topology. The impact of restrictive adhesion manifests in the modulation of several cellular properties of single cells (morphological and actin cytoskeletal changes) and the network organisation and functioning. Calcium wave signalling was observed only in astrocytes grown in confined geometries, with an activity enhancement in cells forming elongated agglomerates with dimensions typical of blood vessels or axon fibres. Our results suggest that calcium oscillation and wave propagation are closely related to astrocytic morphology and actin cytoskeleton organisation.


Assuntos
Astrócitos , Sinalização do Cálcio , Ratos , Animais , Astrócitos/metabolismo , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Hipocampo/metabolismo
3.
Front Cell Neurosci ; 16: 878103, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783094

RESUMO

PKAN disease is caused by mutations in the PANK2 gene, encoding the mitochondrial enzyme pantothenate kinase 2, catalyzing the first and key reaction in Coenzyme A (CoA) biosynthetic process. This disorder is characterized by progressive neurodegeneration and excessive iron deposition in the brain. The pathogenic mechanisms of PKAN are still unclear, and the available therapies are only symptomatic. Although iron accumulation is a hallmark of PKAN, its relationship with CoA dysfunction is not clear. We have previously developed hiPS-derived astrocytes from PKAN patients showing iron overload, thus recapitulating the human phenotype. In this work, we demonstrated that PKAN astrocytes presented an increase in transferrin uptake, a key route for cellular iron intake via transferrin receptor-mediated endocytosis of transferrin-bound iron. Investigation of constitutive exo-endocytosis and vesicular dynamics, exploiting the activity-enriching biosensor SynaptoZip, led to the finding of a general impairment in the constitutive endosomal trafficking in PKAN astrocytes. CoA and 4-phenylbutyric acid treatments were found to be effective in partially rescuing the aberrant vesicular behavior and iron intake. Our results demonstrate that the impairment of CoA biosynthesis could interfere with pivotal intracellular mechanisms involved in membrane fusions and vesicular trafficking, leading to an aberrant transferrin receptor-mediated iron uptake.

4.
Sci Rep ; 12(1): 11055, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35773275

RESUMO

Unpredictable chronic mild stress (CMS) is among the most popular protocols used to induce depressive-like behaviors such as anhedonia in rats. Differences in CMS protocols often result in variable degree of vulnerability, and the mechanisms behind stress resilience are of great interest in neuroscience due to their involvement in the development of psychiatric disorders, including major depressive disorder. Expression of depressive-like behaviors is likely driven by long-term alterations in the corticolimbic system and by downregulation of dopamine (DA) signaling. Although we have a deep knowledge about the dynamics of tonic and phasic DA release in encoding incentive salience and in response to acute/chronic stress, its modulatory action on cortical synaptic plasticity and the following implications on animal behavior remain elusive. Here, we show that the expression of DA-dependent synaptic plasticity in the medial prefrontal cortex (mPFC) is occluded in rats vulnerable to CMS, likely reflecting differential expression of AMPA receptors. Interestingly, such difference is not observed when rats are acutely treated with sub-anesthetic ketamine, possibly through the recruitment of dopaminergic nuclei such as the ventral tegmental area. In addition, by applying the synaptic activity sensor SynaptoZip in vivo, we found that chronic stress unbalances the synaptic drive from the infralimbic and prelimbic subregions of the mPFC toward the basolateral amygdala, and that this effect is counteracted by ketamine. Our results provide novel insights into the neurophysiological mechanisms behind the expression of vulnerability to stress, as well as behind the antidepressant action of ketamine.


Assuntos
Transtorno Depressivo Maior , Ketamina , Animais , Transtorno Depressivo Maior/metabolismo , Dopamina/metabolismo , Humanos , Ketamina/metabolismo , Ketamina/farmacologia , Plasticidade Neuronal , Córtex Pré-Frontal/fisiologia , Ratos
5.
J Neurosci Methods ; 363: 109351, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34481832

RESUMO

BACKGROUND: Mitochondria and their dynamics fuel most cellular processes both in physiological and pathological conditions. In the central nervous system, mitochondria sustain synaptic transmission and plasticity via multiple mechanisms which include their redistribution and/or expansion to higher energy demanding sites, sustaining activity changes and promoting morphological circuit adaptations. NEW METHOD: To be able to evaluate changes in mitochondrial number and protein phenotype, we propose a novel methodological approach where the simultaneous analysis of both mitochondrial DNA and protein content is performed on each individual microsample, avoiding non-homogeneous loss of material. RESULTS: We validated this method on neuronal-like cells and tissue samples and obtained estimates for the mitochondrial/genomic DNA ratio as well as for the abundance of protein counterparts. When the mitochondrial content per cell was evaluated in different brain areas, our results matched the known regional variation in aerobic-anaerobic metabolism. When long-term potentiation (LTP) was induced on hippocampal neurons, we detected increases in the abundance of mitochondria that correlated with the degree of synaptic enhancement. CONCLUSIONS: Our approach can be effectively used to study the mitochondrial content andits changes in different brain cells and tissues.


Assuntos
Mitocôndrias , Neurônios , Encéfalo , Hipocampo/metabolismo , Neurônios/metabolismo , Transmissão Sináptica
6.
Biomedicines ; 9(6)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200818

RESUMO

Mesenchymal stem cells (MSCs), the cells distributed in the stromas of the body, are known for various properties including replication, the potential of various differentiations, the immune-related processes including inflammation. About two decades ago, these cells were shown to play relevant roles in the therapy of numerous diseases, dependent on their immune regulation and their release of cytokines and growth factors, with ensuing activation of favorable enzymes and processes. Such discovery induced great increase of their investigation. Soon thereafter, however, it became clear that therapeutic actions of MSCs are risky, accompanied by serious drawbacks and defects. MSC therapy has been therefore reduced to a few diseases, replaced for the others by their extracellular vesicles, the MSC-EVs. The latter vesicles recapitulate most therapeutic actions of MSCs, with equal or even better efficacies and without the serious drawbacks of the parent cells. In addition, MSC-EVs are characterized by many advantages, among which are their heterogeneities dependent on the stromas of origin, the alleviation of cell aging, the regulation of immune responses and inflammation. Here we illustrate the MSC-EV therapeutic effects, largely mediated by specific miRNAs, covering various diseases and pathological processes occurring in the bones, heart and vessels, kidney, and brain. MSC-EVs operate also on the development of cancers and on COVID-19, where they alleviate the organ lesions induced by the virus. Therapy by MSC-EVs can be improved by combination of their innate potential to engineering processes inducing precise targeting and transfer of drugs. The unique properties of MSC-EVs explain their intense studies, carried out with extraordinary success. Although not yet developed to clinical practice, the perspectives for proximal future are encouraging.

7.
Micromachines (Basel) ; 12(1)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477416

RESUMO

The fabrication of in vitro neuronal cell networks where cells are chemically or electrically connected to form functional circuits with useful properties is of great interest. Standard cell culture substrates provide ensembles of cells that scarcely reproduce physiological structures since their spatial organization and connectivity cannot be controlled. Supersonic Cluster Beam Deposition (SCBD) has been used as an effective additive method for the large-scale fabrication of interfaces with extracellular matrix-mimicking surface nanotopography and reproducible morphological properties for cell culture. Due to the high collimation of SCBD, it is possible to exploit stencil masks for the fabrication of patterned films and reproduce features as small as tens of micrometers. Here, we present a protocol to fabricate micropatterned cell culture substrates based on the deposition of nanostructured cluster-assembled zirconia films by stencil-assisted SCBD. The effectiveness of this approach is demonstrated by the fabrication of micrometric patterns able to confine primary astrocytes. Calcium waves propagating in the astrocyte networks are shown.

8.
J Neurosci Res ; 99(2): 662-678, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32954528

RESUMO

The effect of stress on animal behavior and brain activity has been attracting growing attention in the last decades. Stress dramatically affects several aspects of animal behavior, including motivation and cognitive functioning, and has been used to model human pathologies such as post-traumatic stress disorder. A key question is whether stress alters the plastic potential of synaptic circuits. In this work, we evaluated if stress affects dopamine (DA)-dependent synaptic plasticity in the medial prefrontal cortex (mPFC). On male adolescent rats, we characterized anxiety- and depressive-like behaviors using behavioral testing before and after exposure to a mild stress (elevated platform, EP). After the behavioral protocols, we investigated DA-dependent long-term potentiation (DA-LTP) and depression (DA-LTD) on acute slices of mPFC and evaluated the activation of DA-producing brain regions by western and dot blot analysis. We show that exposure to the EP stress enhances DA-LTP and that desipramine (DMI) treatment abolishes this effect. We also found that DA-LTD is not affected by EP stress unless when this is followed by DMI treatment. In addition, EP stress reduces anxiety, an effect abolished by both DMI and ketamine, while motivation is promoted by previous exposure to EP stress independently of pharmacological treatments. Finally, this form of stress reduces the expression of the early gene cFOS in the ventral tegmental area. These findings support the idea that mild stressors can promote synaptic plasticity in PFC through a dopaminergic mechanism, an effect that might increase the sensitivity of mPFC to subsequent stressful experiences.


Assuntos
Dopamina/fisiologia , Potenciação de Longa Duração , Córtex Pré-Frontal/fisiopatologia , Estresse Psicológico/fisiopatologia , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Ansiedade/etiologia , Ansiedade/fisiopatologia , Depressão/tratamento farmacológico , Depressão/etiologia , Depressão/fisiopatologia , Desipramina/farmacologia , Desipramina/uso terapêutico , Teste de Labirinto em Cruz Elevado , Potenciais Pós-Sinápticos Excitadores/fisiologia , Regulação da Expressão Gênica , Genes fos , Ketamina/farmacologia , Masculino , Motivação , Teste de Campo Aberto , Ratos , Ratos Sprague-Dawley , Natação , Tirosina 3-Mono-Oxigenase/metabolismo , Área Tegmentar Ventral/metabolismo , Área Tegmentar Ventral/fisiologia
9.
Traffic ; 22(4): 98-110, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33314523

RESUMO

Extracellular vesicles (EVs), a broad term for the lipid microparticles known as microvesicles and exosomes, are discharged by cells into their surrounding space. Microvesicles are discharged upon outward plasma membrane budding, while exosomes are secreted after multivesicular body (MVB) fusion with the plasma membrane. The majority of information regarding EV biology comes from studies performed in non-polarized cells. Here we characterize EV release in polarized cells. We found a substantial asymmetry in the number and composition of EVs produced and released from the apical membrane of epithelial cells as compared to the basolateral membrane. We showed that the quantitative difference is related to the polarized distribution of two phosphoinositide species between the two cell surfaces and that the peculiar biochemical composition of resultant EVs reflects their site of origin. In particular, apical and basolateral exosomes may derive from distinct classes of MVBs originating from and fusing with the same plasma membrane. We identify VAMP8/Endobrevin as a regulator of the basolateral release of exosomes, whereas the mechanism responsible for apical EV release requires further study.


Assuntos
Micropartículas Derivadas de Células , Exossomos , Vesículas Extracelulares , Polaridade Celular , Corpos Multivesiculares
10.
ACS Biomater Sci Eng ; 4(12): 4062-4075, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33418806

RESUMO

Artificially grown neuronal cultures of brain cells have been used for decades in the attempt to reproduce and study in vitro the complexity of brain circuits. It soon became evident that this alone was insufficient, because of the random architecture of these artificial networks. Important groundwork therefore resulted in the development of methods to confine neuronal adhesion at specific locations to match predefined network topologies and connectivity. Despite this notable progress in neural circuitry engineering, there is still need for micropatterned substrates that recapitulate better biophysical cues of the neuronal microenvironment, taking into account recent findings of their significance for neuronal differentiation and functioning. Here, we report the development and characterization of a novel approach that, by using supersonic cluster beam deposition of zirconia nanoparticles, allows the patterning of small nanostructured cell-adhesive areas according to predefined geometries onto elsewhere nonadhesive antifouling glass surfaces. As distinguishing features, compared to other micropatterning approaches in this context, the integrated nanostructured surfaces possess extracellular matrix-like nanotopographies of predetermined roughness; previously shown to be able to promote neuronal differentiation due to their impact on mechanotransductive processes, and can be used in their original state without any coating requirements. These micropatterned substrates were validated using (i) a neuron-like PC12 cell line and (ii) primary cultures of rat hippocampal neurons. After initial uniform plating, both neuronal cells types were found to converge and adhere specifically to the nanostructured regions. The cell-adhesive areas effectively confined cells, even when these were highly mobile and repeatedly attempted to cross boundaries. Inside these small permissive islands, cells grew and differentiated, in the case of the hippocampal neurons, up to the formation of mature, functionally active, and highly connected synaptic networks. In addition, when spontaneous instances of axon bridging between nearby dots occurred, a functional interdot communication between these subgroups of cells was observed.

11.
Nat Commun ; 8(1): 1229, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29089485

RESUMO

Ideally, elucidating the role of specific brain circuits in animal behavior would require the ability to measure activity at all involved synapses, possibly with unrestricted field of view, thus even at those boutons deeply located into the brain. Here, we introduce and validate an efficient scheme reporting synaptic vesicle cycling in vivo. This is based on SynaptoZip, a genetically encoded molecule deploying in the vesicular lumen a bait moiety designed to capture upon exocytosis a labeled alien peptide, Synbond. The resulting signal is cumulative and stores the number of cycling events occurring at individual synapses. Since this functional signal is enduring and measurable both online and ex post, SynaptoZip provides a unique method for the analysis of the history of synaptic activity in regions several millimeters below the brain surface. We show its broad applicability by reporting stimulus-evoked and spontaneous circuit activity in wide cortical fields, in anesthetized and freely moving animals.


Assuntos
Biomarcadores/metabolismo , Mapeamento Encefálico/métodos , Sinapses/fisiologia , Animais , Células HeLa , Hipocampo/fisiologia , Humanos , Ketamina , Masculino , Rede Nervosa/fisiologia , Córtex Pré-Frontal/fisiologia , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Transmissão Sináptica/fisiologia
12.
Proc Natl Acad Sci U S A ; 111(47): 16943-8, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25385598

RESUMO

NGF binding to its protein kinase receptor TrkA is known to induce neurite outgrowth and neural cell differentiation. The plasma membrane expansion, necessary for the process, was shown to be contributed by the VAMP7-dependent exocytosis of endocytic vesicles. Working with wild-type PC12 (wtPC12), a cell model widely used to investigate NGF-induced neurite outgrowth, we found that a few hours of treatment with the neurotrophin (and to a lower extent with basic FGF and EGF) induces the appearance of enlargeosome vesicles competent for VAMP4-dependent exocytosis abundant in high REST-PC12 clones. Both the neurite length assay and the immunocytochemistry of enlargeosomes exocytosis revealed that activation of TrkA is induced not only by NGF, but also by the L1 adhesion protein, L1CAM, whose soluble construct binds the receptor with submicromolar affinity. In the intact wtPC12, the L1CAM construct induced autophosphorylation and internalization of TrkA followed by the activation of the PI3K, MEK, and PKCγ signaling cascades, analogous to the responses induced by NGF. Down-regulation of either VAMP7 or VAMP4 revealed the coparticipation of the two corresponding vesicles to the outgrowth responses induced by NGF and L1CAM. Finally, mixing experiments of wtPC12 cells rich in TrkA with high REST PC12 cells transfected with L1CAM documented the transactivation of the receptor by the adhesion protein surface-exposed in adjacent cells. In view of the known inhomogeneous surface distribution of both L1CAM and TrkA in various neural cells including neurons, their transcellular binding could be restricted to discrete sites, governing local signaling events distinct from those induced by soluble messengers.


Assuntos
Exocitose , Fatores de Crescimento Neural/fisiologia , Molécula L1 de Adesão de Célula Nervosa/fisiologia , Neuritos , Receptor trkA/agonistas , Animais , Células PC12 , Ratos
13.
J Neurochem ; 124(3): 397-409, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22973895

RESUMO

The L1 syndrome, a genetic disease that affects 1/30 000 newborn males, is sustained by numerous missense mutations of L1 cell adhesion molecule (L1CAM), an adhesion surface protein active also in transmembrane signaling, essential for the development and function of neurons. To investigate the cell biology of L1CAM, we employed a high RE1-silencing transcription (factor) clone of the pheochromocytoma PC12 line, defective in L1CAM expression and neurite outgrowth. The clone was transfected with wild-type L1CAM and four missense, disease-inducing point mutants encoding proteins distributed to the cell surface. The mutant-expressing cells, defective in adhesion to extracellular matrix proteins and in migration, exhibited unchanged proliferation. The nerve growth factor (NGF)-induced neurite outgrowth was re-established in defective clone cells transfected with the wild-type and the H210Q and I219T L1CAMs mutants, but not in the others. The stimulated outgrowth was confirmed in a second defective PC12 clone over-expressing the NGF receptor TrkA, treated with NGF and/or a recombinant L1CAM chimera. These results revealed a new function of L1CAM, a positive, robust and dose-dependent modulation of the TrkA receptor activated spontaneously or by NGF. The variable effects observed with the different L1CAM mutants suggest that this function contributes to the marked heterogeneity of symptoms and severity observed in the patients affected by the L1 syndrome.


Assuntos
Molécula L1 de Adesão de Célula Nervosa/genética , Molécula L1 de Adesão de Célula Nervosa/fisiologia , Neurônios/patologia , Neurônios/fisiologia , Animais , Humanos , Masculino , Mutação de Sentido Incorreto/genética , Fator de Crescimento Neural/fisiologia , Neurônios/metabolismo , Células PC12 , Ratos , Receptor trkA/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Transdução de Sinais/genética
14.
Glia ; 60(3): 465-75, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22144092

RESUMO

Cultured astrocytes exhibit a flat/epitelioid phenotype much different from the star-like phenotype of tissue astrocytes. Upon exposure to treatments that affect the small GTPase Rho and/or its effector ROCK, however, flat astrocytes undergo stellation, with restructuring of cytoskeleton and outgrowth of processes with lamellipodia, assuming a phenotype closer to that exhibited in situ. The mechanisms of this change are known only in part. Using the ROCK blocker drug Y27632, which induces rapid (tens of min), dose-dependent and reversible stellations, we focused on two specific aspects of the process: its dependence on small GTPases and the large surface expansion of the cells. Contrary to previous reports, we found stellation to be governed by the small G protein Rac1, up to disappearance of the process when Rac1 was downregulated or blocked by a specific drug. In contrast cdc42, the other G-protein often involved in phenotype changes, appeared not involved. The surface expansion concomitant to cytoskeleton restructuring, also dependent on Rac1, was found to be at least partially sustained by the exocytosis of enlargeosomes, small vesicles distinct from classical cell organelles, which are abundant in astrocytes. Exhaustion of stellation induced by repeated administrations of Y27632 correlated with the decrease of the enlargeosome pool. A whole-cell process like stellation of cultured astrocytes might be irrelevant in the brain tissue. However, local restructuring of the cytoskeleton coordinate with surface expansion, occurring at critical cell sites and sustained by mechanisms analogous to those of stellation, might be of importance in both astrocyte physiology and pathology.


Assuntos
Astrócitos/fisiologia , Crescimento Celular , Exocitose/fisiologia , Proteínas rac1 de Ligação ao GTP/metabolismo , 8-Bromo Monofosfato de Adenosina Cíclica/farmacologia , Citoesqueleto de Actina/metabolismo , Amidas/farmacologia , Animais , Animais Recém-Nascidos , Astrócitos/citologia , Crescimento Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas , Córtex Cerebral/citologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Exocitose/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Membrana/metabolismo , Microtúbulos/metabolismo , Proteínas de Neoplasias/metabolismo , Piridinas/farmacologia , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores
15.
Traffic ; 11(10): 1304-14, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20604903

RESUMO

In neurons and neurosecretory (nerve) cells, neurite outgrowth requires surface enlargement sustained by exocytosis of specific but poorly characterized vesicles. A canonical, relatively slow form of outgrowth is known to require the v-SNARE Ti-VAMP. Recently, we have identified a new, rapid form, triggered by activation of Rac1 and sustained by the exocytosis of enlargeosomes (v-SNARE: VAMP4). By parallel study of various pheochromocytoma PC12 cell clones exhibiting either a single or both forms of outgrowth, we show that expression of enlargeosomes, their exocytosis at growth cones and their form of neurite outgrowth are positively governed by the RE-1 silencing transcription factor (REST), a repressor of many nerve cell-specific genes. Using a high REST/enlargeosome-rich PC12 clone transfected with TrkA, we found (i) that nerve growth factor (NGF) can increase the expression of both REST and the enlargeosome maker, Ahnak; and (ii) that outgrowth triggered by NGF, independent from the form triggered by Rac1 and supported mostly by exocytic, Ti-VAMP-positive organelles distinct from enlargeosomes, occurs at slow or fast rates depending on the strength of the TrkA signaling. These results confirm the duality of the outgrowth forms sustained by the two types of exocytic vesicles, reveal their distinct properties and identify new aspects of the REST impact in nerve cell specificity/function.


Assuntos
Exocitose , Cones de Crescimento/metabolismo , Neuritos/fisiologia , Proteínas Repressoras/metabolismo , Animais , Células Cultivadas , Neuritos/metabolismo , Células PC12 , Proteínas R-SNARE/metabolismo , Ratos
16.
Commun Integr Biol ; 3(6): 576-8, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21331244

RESUMO

In neurons and neurosecretory (nerve) cells, neurite outgrowth requires the enlargement of the plasma membrane sustained by the exocytosis of specific vesicles. The well known, slow canonical form of outgrowth induced in pheochromocytoma PC12 cells by NGF, as well as the outgrowth taking place in neurons, involve vesicles positive for the vSNARE Ti-VAMP. Working in defective PC12 clones expressing high levels of the transcriptional repressor REST, we have identified now a new, rapid form of outgrowth, triggered by activation of a small GTPase, Rac1. This form is sustained by the exocytosis of another type of vesicles, taking place locally at the tip of neurite growth cones, the enlargeosomes (vSNARE: VAMP4). This new form, which is positively controlled by REST, requires the dynamics of microtubules, but not of microfilaments. Its signaling remains undefined because established second messengers, (Ca(2+), DAG, cAMP) seem not involved. Using a high REST/enlargeosome-rich PC12 clone transfected with TrkA we have found that the NGF-induced outgrowth is not always slow, but can be fast in cells expressing high levels of the receptor involved, TrkA; that PC12 can express together the two distinct forms of outgrowth, canonical and new, activated independently from each other. Their comparative characterization in terms of changes in the cytoskeleton has now been initiated. The two forms are present also in neurons where the new one seems to predominate in the initial phases of development, the canonical one later on. Our results identify a new aspect of the REST impact in nerve cell specificity/function. The existence of two distinct forms of neurite outgrowth may cope better than a single form with the variable needs of nerve cells in the subsequent stages of their development.

17.
J Cell Sci ; 123(Pt 2): 165-70, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20026640

RESUMO

Neurite outgrowth is known as a slow (days) process occurring in nerve cells and neurons during neurotrophin treatment and upon transfer to culture, respectively. Using Y27632, a drug that induces activation of Rac1, a downstream step of the neurotrophin signaling cascade, we have identified a new form of outgrowth, which is rapid (<1 hour) and extensive (>500 microm(2) surface enlargement/single cell/first hour). However, this outgrowth takes place only in cells (PC12-27 and SH-SY5Y cells, and embryonic and neonatal neurons) rich in an exocytic organelle, the enlargeosome. Golgi vesicles, TGN vesicles and endosomes are not involved. The need for enlargeosomes for plasma-membrane expansion was confirmed by the appearance of their marker, Ahnak, at the cell surface and by the dependence of neurite outgrowth on VAMP4, the vSNARE of enlargeosome exocytosis. In enlargeosome-rich cells, VAMP4 downregulation also attenuated the slow outgrowth induced by nerve growth factor (NGF). Similar to NGF-induced neurite outgrowth in enlargeosome-lacking cells, the new, rapid, Y27632-induced process required microtubules. Other properties of neurite outgrowth in cells lacking enlargeosomes - such as dependence on VAMP7, on microfilaments, on gene transcription and on protein synthesis, and blockade of mitoses and accumulation of neuronal markers - were not evident. The enlargeosome-sustained process might be useful for the rapid neurite outgrowth at peculiar stages and/or conditions of nerve and neuronal cells. However, its properties and its physiological and pathological role remain to be investigated.


Assuntos
Exocitose , Neuritos/metabolismo , Sistemas Neurossecretores/citologia , Organelas/metabolismo , Amidas/farmacologia , Animais , Linhagem Celular , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Ativação Enzimática/efeitos dos fármacos , Exocitose/efeitos dos fármacos , Humanos , Proteínas de Membrana/metabolismo , Microtúbulos/efeitos dos fármacos , Microtúbulos/enzimologia , Proteínas de Neoplasias/metabolismo , Neuritos/efeitos dos fármacos , Neuritos/enzimologia , Sistemas Neurossecretores/efeitos dos fármacos , Organelas/efeitos dos fármacos , Piridinas/farmacologia , Proteínas R-SNARE/metabolismo , Ratos , Proteínas rac1 de Ligação ao GTP/metabolismo , Rede trans-Golgi/efeitos dos fármacos , Rede trans-Golgi/metabolismo
18.
J Neurochem ; 110(1): 284-94, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19457124

RESUMO

Triggering receptor expressed in myeloid (TREM) cells 2, a receptor expressed by myeloid cells, osteoclasts and microglia, is known to play a protective role in bones and brain. Mutations of the receptor (or of its coupling protein, DAP12) sustain in fact a genetic disease affecting the two organs, the polycystic lipomembraneous osteodysplasia with sclerosing leukoencephalopathy (PLOSL or Nasu-Hakola disease). So far, specific agonist(s) of TREM2 have not been identified and its (their) transduction mechanisms are largely unknown. Heat shock protein 60 (Hsp60) is a mitochondrial chaperone that can also be harboured at the cell surface. By using constructs including the extracellular domain of TREM2 and the Fc domain of IgGs we have identified Hsp60 as the only TREM2-binding protein exposed at the surface of neuroblastoma N2A cells and astrocytes, and lacking in U373 astrocytoma. Treatment with Hsp60 was found to stimulate the best known TREM2-dependent process, phagocytosis, however, only in the microglial N9 cells rich in the receptor. Upon TREM2 down-regulation, the Hsp60-induced stimulation of N9 phagocytosis was greatly attenuated. Hsp60 is also released by many cell types, segregated within exosomes or shedding vesicles which might then undergo dissolution. However, the affinity of its binding (K(d) = 3.8 microM) might be too low for the soluble chaperone released from the vesicles to the extracellular space to induce a significant activation of TREM2. It might in contrast be appropriate for the binding of TREM2 to Hsp60 exposed at the surface of cells closely interacting with microglia. The ensuing stimulation of phagocytosis could play protective effects on the brain.


Assuntos
Chaperonina 60/metabolismo , Encefalite/metabolismo , Exocitose/fisiologia , Glicoproteínas de Membrana/metabolismo , Microglia/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Imunológicos/metabolismo , Animais , Astrócitos/metabolismo , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Chaperonina 60/farmacologia , Regulação para Baixo/fisiologia , Encefalite/fisiopatologia , Exocitose/efeitos dos fármacos , Gliose/metabolismo , Gliose/fisiopatologia , Humanos , Imunoglobulina G/metabolismo , Glicoproteínas de Membrana/agonistas , Glicoproteínas de Membrana/química , Camundongos , Microglia/efeitos dos fármacos , Chaperonas Moleculares/metabolismo , Neurônios/metabolismo , Fagocitose/efeitos dos fármacos , Fagocitose/fisiologia , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína/fisiologia , Ratos , Receptores de Superfície Celular/agonistas , Receptores de Superfície Celular/química , Receptores Imunológicos/agonistas , Receptores Imunológicos/química
19.
Trends Cell Biol ; 19(2): 43-51, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19144520

RESUMO

The small vesicles shed from the surface of many cells upon stimulation, considered for a long time to be artefacts, are now recognized as specific structures that are distinct from the exosomes released upon exocytosis of multivesicular bodies. Recent reports indicate that shedding vesicles participate in important biological processes, such as the surface-membrane traffic and the horizontal transfer of protein and RNAs among neighboring cells, which are necessary for the rapid phenotype adjustments in a variety of conditions. In addition, shedding vesicles have important physiological and pathological roles: in coagulation, by mediating the coordinate contribution of platelets, macrophages and neutrophils; in inflammatory diseases, via the release of cytokines; and in tumor progression, facilitating the spreading and release of cancer cells to generate metastases.


Assuntos
Artefatos , Membrana Celular/fisiologia , Exocitose/fisiologia , Exossomos/fisiologia , Animais , Humanos , Mediadores da Inflamação/fisiologia , Processos Neoplásicos , Transporte Proteico/fisiologia
20.
J Cell Sci ; 121(Pt 18): 2983-91, 2008 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-18713833

RESUMO

The mechanisms governing the fast, regulated exocytosis of enlargeosomes have been unknown, except for the participation of annexin-2 in a pre-fusion step. We investigated whether any SNAREs are involved. In PC12-27 cells, which are enlargeosome-rich, the expressed SNAREs exhibited various distributions (trans-Golgi network, scattered puncta, plasma membrane); however, only VAMP4 was colocalized in discrete puncta with the enlargeosome marker desmoyokin. The exocytosis of the organelle, revealed by capacitance increases and by surface appearance of desmoyokin, was largely inhibited by microinjection of anti-VAMP4, anti-syntaxin-6 and anti-SNAP23 antibodies, by incubation with botulinum toxin E, and by transfection of VAMP4 and syntaxin-6 siRNAs. Microinjection of the antibodies anti-VAMP7, anti-VAMP8 and anti-syntaxin-4, and transfection with the VAMP8 siRNA were ineffective. Inhibition of enlargeosome exocytosis by VAMP4 siRNA also occurred in a cell type that was competent for neurosecretion, SH-SY5Y. Moreover, in cells expressing a VAMP4-GFP construct, enlargeosome exocytosis and surface appearance of fluorescence occurred concomitantly, and many ensuing surface patches were co-labelled by GFP and desmoyokin. VAMP4, an R-SNARE that has never been shown to participate in regulated exocytoses, therefore appears to be harboured in the membrane of enlargeosomes and to be a member of the machinery mediating their regulated exocytosis. Syntaxin-6 and SNAP23 appear also to be needed for the process to occur; however, the mechanism of their participation, whether direct or indirect, remains undefined.


Assuntos
Exocitose/fisiologia , Proteínas R-SNARE/metabolismo , Proteínas SNARE/metabolismo , Vesículas Transportadoras/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Proteínas R-SNARE/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...